Erratum to “On weak π-regularity of rings whose prime ideals are maximal”
نویسندگان
چکیده
منابع مشابه
z-weak ideals and prime weak ideals
In this paper, we study a generalization of z-ideals in the ring C(X) of continuous real valued functions on a completely regular Hausdorff space X. The notion of a weak ideal and naturally a weak z-ideal and a prime weak ideal are introduced and it turns out that they behave such as z-ideals in C(X).
متن کاملA note on maximal non-prime ideals
The rings considered in this article are commutative with identity $1neq 0$. By a proper ideal of a ring $R$, we mean an ideal $I$ of $R$ such that $Ineq R$. We say that a proper ideal $I$ of a ring $R$ is a maximal non-prime ideal if $I$ is not a prime ideal of $R$ but any proper ideal $A$ of $R$ with $ Isubseteq A$ and $Ineq A$ is a prime ideal. That is, among all the proper ideals of $R$,...
متن کاملON FINITENESS OF PRIME IDEALS IN NORMED RINGS
In a commutative Noetherian local complex normed algebra which is complete in its M-adic metric there are only finitely many closed prime ideals.
متن کاملa note on maximal non-prime ideals
the rings considered in this article are commutative with identity $1neq 0$. by a proper ideal of a ring $r$, we mean an ideal $i$ of $r$ such that $ineq r$. we say that a proper ideal $i$ of a ring $r$ is a maximal non-prime ideal if $i$ is not a prime ideal of $r$ but any proper ideal $a$ of $r$ with $ isubseteq a$ and $ineq a$ is a prime ideal. that is, among all the proper ideals of $r$,...
متن کاملLocalization at prime ideals in bounded rings
In this paper we investigate the sufficiency criteria which guarantee the classical localization of a bounded ring at its prime ideals.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2000
ISSN: 0022-4049
DOI: 10.1016/s0022-4049(00)00046-3